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A n  inviscid nonuniform axisymmetric transonic code is developed 

for applications in analysis and design. Propfan slipstream effect 

on pressure distribution for a body with and without sting is 

investigated. Results show that nonuniformity causes pressure 

coefficient to be more negative and shock strength to be stronger 
I 

and more rearward. Sting attached to a body reduces the pressure 

peak and moves the rear shock forward. Extent and Mach profile 

shapes of the nonuniformity region appear to have little effect on 

the pressure distribution. Increasing nonuniformity magnitude makes 

pressure coefficient more negative and moves the shock rearward. 

Design study is conducted with the CONMIN optimizer for an 

ellipsoid and a body with the NACA-0012 contour. For the ellipsoid, 

the general trend shows that to reduce the pressure drag, the front 

portion of the body should be thinner and the contour of the rear 

portion should be flatter than the ellipsoid. In a uniform flow of 

Mach number equal to 1.1, a reduction in pressure drag of 14 percent 

is achieved; while at a Mach number of 0.995, only 5 percent in drag 

reduction is possible. In a nonuniform flow of Mach number 0.995 to 

1.1, a drag reduction of 13 percent is obtained. For the design of 

a body with a sharp trailing edge in transonic flow with an initial 

shape given by the NACA 0012 contour, the pressure drag is reduced 

by decreasing the nose radius and increasing the thickness in the 

aft portion. Drag reduction achieved in a uniform flow of Mach 

number equal to 0.98 is 46 percent; in a nonuniform flow of Mach 

number equal to 0.98 to 0.995, 29 percent. 
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1 INTRODUCTION 

Typical transonic axisymmetric nonuniform flows include propfan 

flow around a nacelle and a center body immersed in a jet. By 

introducing a rotation function to account for nonuniformity 

effects, a potential-like equation can be derived from the Euler 

equation, valid along a streamline. Therefore, the problem can be 

solved by revising an existing full-potential code, such as 

Reference 1. This idea was used by Brown (Ref. 2) in the transonic 

axisymmetric nozzle problem. The same formulation is presented in 

Reference 3 for an airfoil in a nonuniform flow. In both cases, a 

total velocity function is used as the primary variable. 

Optimal axisymmetric shapes have been sought experimentally by 

Whitcomb (Ref. 4 )  for subsonic free stream. Based on a slender body 

theory, von Karman's ogive (Ref. 5) and Sears-Haack body (Refs. 6 

and 7) can be analytically derived. Chan (Ref. 8) coupled a 

transonic small-disturbance code (Ref. 9) with a simplex optimizer 

(Ref. 10) to determine numerically optimized shapes at uniform free- 

stream Mach numbers of .98 and 1.1. However, the transonic small- 

disturbance equation is not appropriate for computation of drag for 

shapes of the blunt-nose type frequently used at transonic speeds. 

Optimal shapes in axisymmetric nonuniform transonic flow have not 

been investigated in the past. 

In this paper, a method based on disturbance potential-like 

equation is presented to solve the nonuniform, axisymmetric 

transonic problem. It is suitable for subsonic to low supersonic 
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nonuniform flow and shapes of the blunt-nose type. Optimal shapes 

with minimum pressure drag will be sought by coupling analysis with 

an optimizer (Ref. 13), using the maximum thickness and the trailing 

edge closure as constraints. Effects of different Mach number 

nonuniformity and profile shapes will also be investigated. 
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2.1 Governing Equations for Axisymnetric Nonuniform Flow 

The steady Euler equation along a streamline is (by combining 

Equations 1, 2, and 5 in Reference 3) 

where a is the local speed of sound and 4 is the local velocity 
vector. To satisfy the surface boundary conditions exactly, the 

body-normal coordinates are used in the nose region to fit the blunt 

nose, and sheared cylindrical coordinates are used on the afterbody 

to accommodate corners such as boattails and flares (Ref. 11). For 

smooth, closed, convex bodies which are blunt on both ends, the 

transformed coordinates ( E ,  q) are chosen to be the usual tangential 

and normal body coordinates. In this report, the body-normal 

coordinates are used up to the first horizontal tangent; and beyond 

that point, a sheared cylindrical system is introduced. To derive 

equations in body-normal coordinates, Equation (1) is first written 

in a general curvilinear coordinate system as 

.l 

I L J  I L J 

i u a  v a  w a  + 2  = - ( - -  + - -  + - -)1u$ + vs + wk) 
2 hl ax, h2 ax2 h, ax,  

where u, v, and w are the 

vector q; and hl, h2, and + 

J J  

xl, x2, and x3 components of the velocity 

hg are the corresponding metrics. 
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For body-normal coordinates, the metrics are 

hl = 1 + KT) 
h2 = 1 (3b) 

h3 = r + rl cos 

(3a) 

8 (3c) 

where 8 and K are the angle (measured counterclockwise from the axis 

of symmetry) and curvature of the reference coordinate surface; r is 

the radius from the axis; and the corresponding coordinates are 

= 5 (4a) 

x2 = 11 (4b) 

*3 = 5 ( 4 c )  

as depicted in Figure 1. Notice that w = 0 for axisymmetric 

cases. Now Equation (2) can be expressed as follows: 

2 2 1  1 2 2  (a - u ) - u  -uv(-v +u)+(a -v)vT) H 5  H 5  rl 

2 K COS0 2 sine + a  (E+- )v+a - u = O  r r (5) 

where H = hl = 1 + KT), and subscripts denote partial 

differentiation. Define a velocity function $ and a rotation 

function F to relate velocity components u and v as follows: 

v = $n - (1 + F)sin8 (6b) 

Then Equation (5) can be reduced to a second-order partial 

differential equation in $ with rotation function derivatives as 

forcing functions as follows : 

2 2uv V 

a 2 H H 5 5 a2H $Crl a 
+ (1 - 2 u2 1 1 (l--)-(-$) - -  
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a 2 H  a 

uv - i2 case + (1 - 
a 

This equation is similar to 

2 7)sine]F V = 0 
n a 

the corresponding uniform flow 

(7) 

disturbance potential equation with the addition of rotation 

function derivatives as forcing functions. 

In the sheared cylindrical coordinates, the velocity function $ 

and the rotation function F ar related to velocity components u, v, 

as 

u = 1 + F + $5 - rb'$,, 
v = 4n (8b) 

(8a) 

Thus the governing equation becomes 

uv 2 
U 

2 
U 

a a a 
- 2[ri(l - 7) + -]$ (1 - 2 sn 

where 5 is identified with the axial coordinate, x, and rl is a 

transformed radial coordinate such that = 0 is the body surface. 

The body shape enters Equation (9 )  through the first derivative 
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r' and the second derivative r" of the local body radius, where 

primes mean differentiation with respect to x. With the two 
b b 

coordinate systems joined as described, the body surface is a 

coordinate surface where 0 = 0 ,  and this simplifies the application 

of the surface flow tangency condition. It is also observed that 

Equation (9) has the same coefficients as the uniform-flow 

disturbance potential formulation again except the F and F,, terms. 5 

2.2 Equation at the Axis 

Along the axis of symmetry (the stagnation streamline) the 

limiting form of Equation (5) must be used to properly treat the 

terms involving -. The following symmetry conditions are used: 1 
r 

$5  = 0 (loa) 

F 5 =  0 (lob) 

and since 0 = 90" at the axis of symmetry, 

u = 0 .  (10c) 

The following limits are used as 5 -+ 0 :  

cos0 mine - K 

r Hsin0 H 
- - + - - -  

where the subscript o denotes a quantity on the axis. Since the 

rotation function is constant along the axis, 

F,, = 0 (12) 

Hence at the axis, Equation ( 5 )  becomes 
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K 
2 

V 
0 + 2 -  0 - 0  + (1 - 2''o Ho 'On 

2 

nn a 7 ' 5 5  
0 0 

Notice t h a t  t he  r o t a t i o n  func t ion  d e r i v a t i v e s  are not present  i n  

Equation (13) and t h a t  Equation (13) is i d e n t i c a l  t o  t h e  uniform- 

flow p o t e n t i a l  formulat ion.  

2.3 Rotation Function 

The v o r t i c i t y  vec tor  i s  def ined as the  c u r l  of t h e  v e l o c i t y  

vec to r  and can be shown t o  be 

1 
= - H [v5  - ( H u ) , , ] ~  

Its magnitude can be f u r t h e r  l inked  t o  thermodynamic p r o p e r t i e s  as 

(Ref. 2)  

where R = 1 is the  normalized gas cons tan t ,  T is the  temperature ,  P 

is the  p re s su re ,  M is the  local Mach number, y is  the  r a t i o  of 

s p e c i f i c  h e a t s ,  and the  s u b s c r i p t  o denotes s t a g n a t i o n  q u a n t i t i e s .  

Note t h a t  a l l  v a r i a b l e s  i n  t h e  above have been i m p l i c i t l y  normalized 

wi th  respec t  t o  t he  ambient v e l o c i t y  qa and the  ambient p re s su re  

Pa. Define the  stream f u n c t i o n  J, as fol lows:  

where T is a dummy v a r i a b l e  and p is the  l o c a l  dens i ty .  
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Since stagnation quantities are constant along a streamline, 

the stream function J, can be used to identify the stagnation 

pressure Po, the stagnation density po, the stagnation temperature 

To, and thus the stagnation speed of sound aoo After local Mach 

numbers are calculated, the local density can be obtained by the 

isentropic relation 

In sheared cylindrical coordinates, the vorticity vector is 

- uY)$ = -F k -b 
w = (vx 

rl 

So Equation (15) becomes 

M2 aTo T, ap0 
-1 (T + y p ~  a n  

YK F =  
rl u(1 + - - M2) 2 

Because Equation (19) is identical to Equation (15) if 8 is 

equal to zero, the boundaries of these two coordinates are therefore 

chosen to be the first horizontal tangent on the body surface. 

Now the solution procedures to calculate the rotation function 

can be stated as follows: 

(1) For each constant 6 ,  assume the initial local density to be 

that of the undisturbed one. 

( 2 )  Calculate the stream function using Equation (16). 

( 3 )  Interpolate po, Po, and To; and calculate a,, M, and p, using 

Equation (17). 

Obtain To,, and Po,, by applying cubic spline interpolation to 

To(0)  and Po(,,) values. 

(4) 
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(5) Repeat s t e p s  (2 )  - ( 4 )  u n t i l  dens i ty  converges. 

(6)  I n t e g r a t e  F t o  o b t a i n  the  r o t a t i o n  func t ion  by moving F term rl 5 

t o  t he  r i g h t  s i d e  of Equation (15). 

The i t e r a t i v e  process  w i l l  converge i n  s e v e r a l  i t e r a t i o n s .  

2.4 Pressure Coefficients 

Along a s t r eaml ine ,  t he  fol lowing form of energy equat ion  f o r  a 

p e r f e c t  gas can be used: 

I f  t h e  entropy is assumed t o  be near ly  cons tan t  along a 

s t r eaml ine ,  i. e. only weak shocks are present ,  t he  p re s su re  

c o e f f i c i e n t  can be der ived from Equation (20) as 

P - PW 
cp = 1 2 

5 Pm Qoo 
re f  r e f  

2.5 Coordinate Stretching Functions 

The normal coord ina te  rl w i l l  be s t r e t c h e d  according t o  t h e  

fol lowing r e l a t i o n  (Ref. l) ,  
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where y is the computational coordinate which varies from zero at 

the body to one at infinity. The constant A controls the physical 

step size at the body (denoted as o ) ,  A = 0 ; and for a given value 

of A, the exponent a controls the size of the last finite value of 

0. Large values of a move points farther away from the body. 

The tangential coordinate stretching to be used is a 

YO 

transformation between the physical arc length along the reference 

surface, 5, and the computational coordinate, x, which varies from 

zero to one. For closed bodies the transformation is (Ref. 1) 

where A and B are determined 

= 0 )  and requiring that 5 = 

(23 )  

by specifying 5 ( 0  denotes nose or x 

'iMX 

1 2  A + B(x - 7) ] 

X 
0 

at x = 1. These conditions give 

For open bodies the tangential coordinate stretching is divided into 

two regions with the physical location of the dividing point being 

x,. 
is given by (Ref. 1) 

The stretching function for the region from the nose up to x,,, 

o < x < x m  (25) 
e = a x + a x 3 + a x  5 + a x  7 

1 2 3 4 
In the region from xm to infinity, the stretching function is 

(Ref. 1) 

x < x < l  m 

I 
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The coefficients in these expressions are determined by 

and 5 and requiring that 5 and CXx be 
X 

specifying 5 

continuous at x = s. These conditions give (Ref. 1) 

X xm m’ ‘x 9 
0 

a1 = sx 
0 

b = 5, 
xm 

70cl - 22c2 + 2c3 
a, = 7 

L L 16 xm 

3 - 8 4 ~ ~  + 36c2 - 4~ 
4 

= 
a3 1 6xm 

3Ocl - 14c2 + 2c3 - 
6 1 6xm a4 - 

5 n  - alxm 
m 

where c1 = 
X 

c2 = b - al 
2xmb 
1 - x  and c 3  = 

m 
Now, in the region of body normal coordinates, Equations (6a, b) and 

( 7 )  become 
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2 2uv K sine f u K cose 
a 

+ (2 g + 7) - 0 + [(I - 7) + y l g 4 r l  
a H 5  

2 

2 H 5  
f uv U + [7 sine - (1 - -)case] - F 

a a 

2 
(29) uv V - [? cose + (1 - T)sine]gF = 0 

rl a a 

Likewise in the region of sheared cylindrical coordinates, Equations 

(8a, b) and (9) are transformed into the following: 

u = 1 + F + f $ 5  - r i g $ n  

v = g4n (30b) 

(30a) 

and 

2 
U 

2 + [r 1 - rc(1 - %)]goQ + (1 - 2)fF5 
a a 

U uv - [rL(l - 7) + 7]gFrl = 0 
a a 

If r' = 0 and r" = 0 in the region of body normal coordinates and 8 

= 0 and K = 0 in the region of sheared cylindrical coordinates, 

Equations (28a,b), (29), (30a, b) and (31) can be combined into a 

single set of equations 

b b 
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f 
H 5  b n  u = -  + + (1 + F)cose - r'g+ 

v = gtJn - (1 + F)sine 
and 

2.6 Rotated F i n i t e  Difference Scheme 

Rotated difference (Ref. 12) is needed to keep diagonal 

dominance of the tridiagonal implicit scheme and the correct zone of 

dependence and thus the numerical stability. 

normal coordinates, Equation (28a, b) and (29), the streamwise and 

normal derivatives +ss and 

In the case of body 

are given by 

13 



where S and N are the streamwise and normal directions to a 

streamline. 

In the sheared cylindrical coordinates, Equations (30a, b) and 

(31), hs and are given as 

Now Equation (33) is written in the form: 

2 
U 

2 u K cose 

a a 
+ [(l -+E+-- r r p  - -+g$rl 

f 2 

2 H 5  
uv U + [T sin8 + (1 - -)cos9] - F 
a a 

At supersonic points, upwind differences are used for the three 

second derivatives contributing t o  QSs, and central differences are 

used for those contributing to and all first derivatives. At 

subsonic points, the usual procedure is used with central 

differences for all derivatives directly in Equation (33). Thus at 

subsonic points the truncation error is formally of the second 

order, while at supersonic points it is of the first order. 
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Equation (36) is seen to be quite similar to that used in 

RAXBOD (Ref. 12), except for the rotation function derivatives. 

Therefore, Keller and South's transonic disturbance potential code, 

RAXBOD, is modified to solve the present problem. 

2.7 Boundary Conditions 

At infinity, the perturbation potential is required to vanish; 

that is, 

4 + O a s n + =  (37)  

In sheared cylindrical coordinates, the perturbations at downstream 

infinity ( E  + m) must likewise vanish. This can be accomplished via 

transformation T = ~ ( 5 )  by mapping 6 = to a finite value of T, or 

one can simply use a sufficiently large 6 and apply 4 = 0 there, or 

extrapolate $when M(r)inf > 1. The latter course was taken in the 

present study. That is, for M(r)inf < 1, the downstream boundary is 

located about three-fourths to one body length beyond the stinglbody 

junction or other most downstream obstacle. 

only requirement is that the boundary mst be downstream of the last 

For M(r)inf > 1, the 

subsonic region. Numerical results are otherwise insensitive to the 

precise location of the boundary. 

On the surface, n = 0, the flow tangency condition depends on 

the coordinate system as follows: 

Body Coordinates: 

v = o  

or 

= (1 + F)sine 4T-l 
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Sheared Cylindrical Coordinates: 

v - ur' = 0 b 
or 

r' b 
(1 + F + '(1 = 

'n 1 + (ri)' 
In the sheared cylindrical coordinates, the body surface 

boundary condition is satisfied by introducing dummy points inside 

the body. Details can be found in Reference 1. 

the formulation is described in the following. 

For completeness, 

Note that the dummy 

points may be located above or below the symmetry axis. 

points above the axis, as shown in Figure 2(a), the values of the 

potential function at these dummy points are computed through 

Equation (39b). 

For dummy 

or 

= - + /2Ay 'i , jmax+l 'i, jmax-1 y 

Note that 4 = #I y through Equation (22). It is possible that n Y Q  
dummy points may be below the axis, as shown in Figures (2b) and 

(2c). Due to symmetry, the potential at a point below the axis 

should be the same as that for a point (i.e., the image point) at an 

equal distance above the axis. In this case, let y1 be the 

computational coordinate at the image dummy point where the 

potential is to be calculated. 

this point (which is the same as ) yields (Ref. 1) 

A Taylor series expansion for (I at 

i, jmax+l 

- - 
'i, jmax+l 'i,jmax + Yl4y + 
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Similarly, 
9 

- - + AY+y + 2 AY +yy + +i, jmax-1 +i, jmax 

Eliminating + from these equations and solving for + it YY i , jmax+l ' 
is obtained that 

n 

To calculate yl, the computational coordinate corresponding to the 

location of the axis, ya, is first obtained. 

Note that ya is negative. 

Then y = Ay + 2ya. 1 

ya can be found from the stretching 

function (Equation 2 2 )  by expansion in a series for a small y to 

give 

2 a ( a +  1) 3 a ( a +  l ) ( a +  2 )  4 y + . . . ( 4 3 )  2 y +  6 H n = y + a y  + 

Equation ( 4 3 )  can be inverted to give 

a ( 3 a  - 1) n 3 - a ( l 6 2  - 1 2 a +  2 )  n 4 ( s i )  + . . . n 
2 (s i ; )  6 y = - a ( 2 l 2  + 

( 4 4 )  

Putting 0 = -rb into Equation ( 4 4 )  gives the value of ya. 

2.8 Grid Halving 

A considerable saving in computing time can be achieved by 

first obtaining the solution on a coarse grid and then halving the 

mesh size in both directions for further calculation. This process 

can be continued to any desired mesh refinement within the computer 

time and storage limitations. The following third-order 
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interpolation formulas are used to interpolate results in a coarser 

grid to those in a finer grid: 

1) For points next to symmetry axis, 

if the symmetry axis is at i - 1; 

if the symmetry axis is at i + 1. 
2) For points not next to symmetry axis, 

'i, j = .3125$i-l,j + .9375$i+1 ,j - 3125 $1+3, j 

+ .0625$i+5 
,j 

if the symmetry axis is at i - 1; 

+ .0625$ i-5, j 
if the symmetry axis is at i + 1. 

Similar formulas are also used in the j direction. 

2.9 Optimization formulation: 

CONMIN (Ref. 13) is used to couple the present program for 

designing an axisymmetric body. 

The objective function OBJ is formulated as 

OBJ = -0.1/(0.001 + c ) 45 
where cd is the pressure drag. 

W 

(47) 



The maximum 

formulated as 

G(1) = 

G(2) = 

thickness is assumed to be constrained. It is 

r 
lO(1 - I ) 

lMX 

lower 

where rmax is the maximum radius. G is the constraint function. 

Since equality constraints are not practical numerically for 

and a lower limit rlower upper nonlinear problems, an upper limit r 

are used instead. The constant, 10, is used to increase the 

relative importance of constraint gradients in finding the optimal 

direction during optimization. 

The trailing-edge thickness can also be constrained. The 

constraint functions are defined as 

te r 

tlower 
G(4) = 1 - 

if the constrained thickness, t, is not zero. Otherwise, they are 

Since transonic computation is very CPU-intensive, the 

following representation of body shapes is used to reduce the number 

of design variables. For an ellipsoid-type body, the slope of the 
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body shape is expressed in a series as follows: 

dr An+l 
7 -  - cot 
dx 

i X xfl - 
A, 

2 x = x  + i 

e e where cot - and tan 'I take 
edge slopes, respectively; 

2 

the ending x coordinate; 8 

N 
e + C Ansin ne - -2 tan An+2 

L 

(1 - case) (51b) 

care of the leading edge and trailing 

xi is the starting x coordinate; xR is 

is the corresponding angle in the 

transformed plane; and N is the number of coefficients in the sine 

series. The body shape can be integrated to give 

dr r = J z d r  

%+2 A1 sin2 e ( e  - -) - R {%+l ( e  + sine) - - 7  2 ( e  - sine) + 

I )  (52) 
sin(n - l i e  - sin(n + l i e  

+ EAn[ n - 1 n + l  n=2 

By defining the following quantities 

1) 
-1 2x - 

(T 8 = cos 

(1 + cos E), M even, 1 c p c M - 1 xp = T  M 

Weber (Ref. 14) showed that the leading edge radius rRe is given by 

r M-1 sin+ r 
P J 2 - Re - - -2 c ( -1 )P  P -  

R p=l  1 + cos+ P g 

r M-1 sin4 r 
Re P P 
R k1 = J 2 - = -2 ( -1 )P  1 + cos+ R 

p=1 P 
- 
r M-1 sin+ r 

1 - cos+ R 
te - P -  u AW2 J 2 - - -2 C (-1)' 

p = l  P 
R 

(53) 

(54) 

(55) 
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and 

4rte 
A 1 = x -  %+l + %+2 

2r 
R 2 

%+I ( 8  + sine) +- %+2 ( e - sine) Let f ( e )  = - - - 2 

Multiply (57) by 

sin(m - 1 ) e  - sin(m + l)e 
m - 1  m + l  

and integrate with respect to 8 to obtain 

Id0 
sin(m - l ) e  - sin(m + l)O n 

j f ( Q [  m - 1  m + l  
0 

Therefore, 

1 1 Am-2 + Am+2 
21 = 2 2 (m - 1) (m + 1) 2 +  (m - 1) (m + 1) Am [ 

M sin(m - l)e, sin(m + l ) e k  
I, m 2 (59) - 2 

+ -  ' f u p  m - l  m + l  
k = l  

Note that rte may become negative during the optimization 

process. In this case, the coefficient AN+* is slightly reduced 

repeatedly until rte is nonnegative. 
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To find rmx, dr/de is set to zero: 

N + C An[cos(n - 1 ) e  - cos(n + l ) e ] )  
n L 

N 

2 
+ 2 C A sin nesine) n 

L e t  

N 

n n  
+ 2 C A sin riesine 

L 

Then 

~ ' ( e )  = - - AN+l sine - - %+2 sine + A1sin28 
2 2 

N + 2 C A [n cos nesine + sin necose] 
2 n 

8 at rmx can be iteratively solved by Newton's method as 

For a body with nonblunt trailing edge, the shape function 

given by Equation (52) is found inappropriate because the 

coefficient AN+1 is  too dominating. Any change in AN+1 will affect 
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not only the nose shape but also the trailing-edge thickness quite 

significantly. Therefore, the shape function is redefined to be 

N 

n= 1 
r = - R (%+lsinBcos 2 + Ancos(n - l)e} 2 2 

It can be shown that AN+1 is still related to the leading-edge 

radius through Equation ( 5 4 ) .  

coefficients in the usual manner. 

An, n < N, are determined as Fourier 
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3. NUMERICAL RESULTS AND DISCUSSIONS 

Examination of the governing equation (Equation 9) for the 

present nonuniform flow problem indicates that the equation is 

similar to that for the uniform flow except the "nonhomogeneous" F- 

terms. Therefore, it is appropriate and convenient to modify the 

uniform-flow code of Reference 1 to solve the present problem. 

Before numerical results are presented, first some 

considerations of numerical stability and convergence of the revised 

code will be given. Relaxation and supersonic damping factors, as 

discussed in Reference 12, are needed to ensure stability and 

convergence. Therefore, they will be considered next. 

Residual of the governing equation is indicative of how well 

the current values of Q satisfy the governing equation and thus is 

3 . 1 Numerical Stability 

Stability is indicated by A$max. Since the governing equation 

occurs usually on the symmetry axis or on 

5 rl 

1 
r A$lax involves a -term, 

the body surface. With the addition of F and F terms, the 

location of A$max moves to where the maximum values of these terms 

occur. The latter are somewhere ahead of the nose and away from the 

axis. 

oscillatory. 

When shock is strong, the solution and A$max may be 

3.2 Convereence 
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used as the  convergence c r i t e r i o n  of the  present  method. I n  

subsonic o r  low t r anson ic  f r e e  stream, the  va lue  of t he  r e s i d u a l  can 

be reduced t o  an a r b i t r a r i l y  small value.  However, because of t he  

f i r s t - o r d e r  accuracy inherent  a t  the  supersonic  po in t s ,  t h i s  seldom 

can be done i n  high t r anson ic  o r  supersonic  f rees t ream.  The 

l o c a t i o n  of maximum r e s i d u a l  u sua l ly  occurs  a t  e i t h e r  t h e  t r a i l i n g  

edge o r  t he  nose s t agna t ion  poin t .  

3.3 Relaxation and Supersonic Damping Factors 

A r e l a x a t i o n  f a c t o r  i s  used t o  c o n t r o l  t h e  s t a b i l i t y  and 

convergence a t  subsonic  po in t s ,  while a supersonic  damping f a c t o r  is 

t o  i nc rease  the  s t a b i l i t y  a t  supersonic  poin ts .  When t h e  sum of 

r e s i d u a l s  of t he  last  t en  i t e r a t i o n s  inc reases ,  t he  o r i g i n a l  code 

w i l l  i nc rease  the  value of t he  supersonic  damping f a c t o r  by 0.1 o r  

decrease  the  r e l a x a t i o n  f a c t o r  by t en  percent .  It t u r n s  out i n  most 

cases t h a t  t he  maximum r e s i d u a l  occurs  a t  e i t h e r  t he  nose o r  t h e  

t a i l  where the  flow is usua l ly  subsonic.  Therefore ,  t he  supersonic  

damping f a c t o r  w i l l  not  change during t h e  i t e r a t i o n .  

a l s o  an important i n d i c a t o r  f o r  s t a b i l i t y  and convergence and i t s  

l o c a t i o n  is usua l ly  not a t  t h e  body su r face ,  another  i n d i c a t o r  is 

set  up t o  i n d i c a t e  whether t h e  point  with A$ is subsonic  o r  

supersonic .  Therefore ,  f o r  each t en  i t e r a t i o n s ,  i f  e i t h e r  t he  

Since A$max is 

m a X  

-point o r  t he  poin t  of maximum r e s i d u a l  is supersonic ,  t h e  
A@lMX 

supersonic  damping f a c t o r  is increased  by 0.1. Likewise, when 

e i t h e r  po in t  is subsonic ,  t he  r e l a x a t i o n  f a c t o r  is decreased by t e n  
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percent. The maximum supersonic damping factor is set to 3.0  and 

the minimum relaxation factor is set to 0 . 3 .  If for a continuous 

one hundred iterations the sum of maximum residual decreases, the 

supersonic damping factor is decreased by 0.1 when at either 

locations of maximum residual or AI$ the flow is supersonic. The 

relaxation factor is increased by ten percent when at either 

locations of maximum residual or A$ the flow is subsonic. The 

minimum of supersonic damping is set to zero, while the maximum 

relaxation factor is an input quantity. 

maX 

IMX 

3.4 Numerical Results in Analysis 

Experimental data for a body in axisymmetric nonuniform 

transonic flow are not available for comparison. Therefore, in the 

following only theoretical results will be presented to show the 

general trend. In uniform flow, some results with data comparison 

can be found in Reference 12. 

The main motivation of this research is to find the 

nonuniformity effects on a propfan nacelle. The experimental Mach 

number profile of a propfan is plotted in Figure 3 with a scaled 

ellipsoid. Calculated pressure distributions shown in Figure 4 

indicate that the pressure distribution in a nonuniform flow is more 

negative than that in a uniform flow with a Mach number equal to 

that either of the external flow or in the slipstream. Similar 

results have been obtained for a Joukowsky airfoil in two- 

dimensional incompressible flow in Reference 16. For an ellipsoid 
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with sting as shown in Figure 5 ,  a similar trend in pressure 

distribution as presented in Figure 6 is observed. Physically, it 

is possible that this is due to the constraint effect of the outer 

subsonic freestream which reflects the disturbance back to the 

central region. The effect of sting on the ellipsoid is similar to 

having a thick wake and is to decrease the pressure as shown in 

Figure 7. Notice that in all cases shown above, no local supersonic 

regions are present for the configuration used with a fineness ratio 

of 10. 

In Reference 8, Mach numbers of 0.98 and 1.1 were used in 

determining axisymmetric bodies with minimum pressure drag in 

uniform flow. Therefore, nonuniform transonic freestreams from Mach 

0.98 to 1.1, 1.2, 1.3, and 1.4 are chosen in the present parametric 

investigation. The following Mach profiles will be used (see 

Figures 8a,b): 

Minf (r) = 1.4 - 0.42 tanh(i) (62) 

where r is the radial distance and d controls the extent of the 

nonuniformity region. As shown in Figure 9, it is seen that for the 

same maximum Mach difference, the pressure distribution appears to 

be about the same, irrespective of difference in profile shapes. 

Note that C in Figure 9 and all that follow is based on the dynamic 

pressure in the external uniform flow. This result is unexpected 

because in References 15 and 16 the extent of nonuniformity was 

shown to affect the pressure distribution of an airfoil in two- 

dimensional flow. To investigate this problem further, step-type 

P 
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nonuniform profiles shown in Figure 10 are employed. Again, the 

same results are obtained as shown in Figure 11. 

On the other hand, for the configuration with sting in the same 

Mach profiles (Figure 12), some differences (Figure 13) do show 

up. However, for the step-type nonuniform profiles (Figure 1 4 ) ,  all 

pressure distributions, again, are the same (Figure 15). In Figure 

16, the sting effect is seen to reduce the shock peak. It also 

shows that the nonuniform Mach profile shape is not an important 

parameters in the present problem. One possible reason for this is 

that there is no vortex flow in the present axisymmetric cases, i.e. 

with zero lift, while in the airfoil problem (Refs. 15 and 16), lift 

is significant. 

Since the nonuniform Mach profile shape is not an important 

parameter in the present study, nonuniform extent of d = 0.1 will be 

used in the following to investigate the effect of nonuniformity 

magnitude. As shown in Figure 17, in supersonic nonuniform 

freestreams the magnitude of nonuniformity increases the pressure 

coefficient negatively and nonlinearly for the ellipsoid 

configuration. 

configuration. In a transonic nonuniform freestream, increasing the 

Mach number in the nonuniform region tends to make C more negative 

and move the shock rearward as shown in Figures 19 and 20. In 

Figure 21 it can be observed that the pressure is more negative in a 

subsonic outer stream and that the sting reduces the shock peaks. 

Similar trend can be seen for the ellipsoid/sting 

P 
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In Figure 22, the drag coefficient is plotted for all cases 

investigated. It is seen that it is slightly negative for near- 

sonic nonuniform cases. This is because of the neglect of viscous 

drag and base drag. Transonic freestream is found to induce lower 

drag for near-sonic cases but higher drag for stronger 

nonuniformities. This is because at near sonic conditions transonic 

freestream wave drag is minimal. 

in the nonuniform region, the wave drag approaches that of a uniform 

supersonic freestream. 

However with higher Mach numbers 

3.5 Numerical Results in Design Optimization 

Chan's (Ref. 8) numerical results were obtained at Mach 0.98 

and 1.1 in uniform flow. However, the starting shape to be used in 

the present investigation has been verified experimentally (Ref. 17) 

and numerically (Ref. 12) not to induce a shock wave until M = 

0.986. Therefore, it is decided to use Mach 0.995 and 1.1 as 

typical Mach numbers for uniform subsonic and supersonic cases, 

respectively, and a nonuniform freestream varying from a Mach number 

of 0.995 to 1.1 for the nonuniform flow case. To reduce the number 

of design variables, representation of the body shape in a Fourier 

series as discussed in Section 2.9 is used. The number of design 

variables (i.e. the Fourier coefficients) can be reduced to six 

without sacrificing the accuracy. Since in transonic computation it 

takes too many iterations to converge when a variable is perturbed, 

the step size can not be too large. However, if a small step size 
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is used, the gradient of the objective function would be small so 

that the objective function will change little. Therefore, a user's 

judgment is needed in the design process. The following results are 

obtained after many cycles of optimization. In each cycle, only one 

to three iterations in CONMIN are used. The results may not 

represent the final optimum. 

Ellimoid 

For the uniform supersonic case of Mach 1.1, the original and 

the final pressure distributions are compared in Figure 23.  The 

original shape produces a gradual expansion until a tail shock is 

encountered. The designed shape results in a wavy pressure 

distribution ending with sudden expansion and shock at the tail. A 

drag reduction of 14 percent is achieved. The shapes are compared 

in Figure 24..  The designed shape shows a two-percent reduction in 

maximum thickness, with thickness reduced in the front, and the 

contour straightened in the rear. 

For uniform subsonic freestream of Mach 0.995,  a drag reduction 

of 5% and a minor pressure change, caused by reduction in shock 

strength, are seen in Figure 25. 

thinning in the front and slight thickening in the rear, as shown in 

Figure 26.  

The designed shape shows slight 

For the case with nonuniform transonic freestream, it is 

observed in Figure 27 that the design pressure distribution 

eliminates the double shocks associated with the original shape. 

This results in a 13% reduction of drag and 1.18% increase of 
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maximum thickness. In Figure 28, the designed shape is shown to be 

slightly thinner in the front, thicker in the middle, and flatter in 

the rear. 

In a11 cases, the location of maximum thickness stays the same 

in the subsonic case and shifts slightly forward in supersonic and 

transonic cases. Note that the original shape is shockless until M 

= 0.986. All cases considered here involve higher Mach numbers. It 

appears that by thinning the front and thickening the rear (to 

reduce the surface slope), the pressure drag can be reduced at the 

higher Mach numbers. 

Body with NACA 0012-Type Contour 

To design a body with a rounded leading edge and a trailing 

edge which is not blunt, an initial shape given by the NACA-0012 

airfoil contour is chosen. 

Equation 64) are used. The maximum thickness is constrained to be 

between 13% and 11.5% and the trailing-edge thickness between 0% and 

Again, six design variables (An in 

1%. As indicated in Reference 11, reducing the residual of the 

governing equation to a small value may not be needed for a 

reasonably accurate solution. Therefore, in the following design 

process, the convergence criterion is based on the maximum equation 

residual obtained in the analysis of the input shape. The final 

designed shape is then subject to further analysis through 1200 

iterations for final plotting. 

In a uniform flow with M = 0.98, the results are presented in 

Figures 29 and 30. As can be seen in Figure 29, the shape of the 
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NACA 0012 contour produces higher negative pressure behind the nose 

and a stronger shock which is more forward. By decreasing the nose 

radius and increasing the thickness in the aft portion (Figure 30), 

the designed shape produces less expansion to reduce the negative 

pressure level behind the nose and a weaker shock which is more 

aft. 

0.0187. 

The achieved pressure drag reduction is about 46% with k d  = 

The same initial shape is again used in a nonuniform transonic 

flow. The Mach number in the external stream is 0.98. However, 

over an extent of nonuniform flow region equal to one-half of the 

body length, M is set to 0.995 around the body. Similar results in 

pressure distributions and change in body shape are obtained, as 

shown in Figures 31 and 32. That is, reducing the nose radius and 

increasing the thickness in the aft portion tend to reduce the wave 

drag. However, the pressure drag reduction is less than that in the 

uniform flow case, being 29% with Acd = 0.0137. 
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4. CONCLUSIONS 

An inviscid nonuniform transonic axisymmetric body code capable 

of performing analysis and design was developed. Numerical stabil- 

ity and convergence behaviors were discussed, and so were the super- 

sonic damping and relaxation factors. Numerical results showed that 

nonuniformity caused pressure coefficient to be more negative. 

Sting attached to the body was t o  reduce the pressure peak near the 

juncture. If a shock was present, the strength was reduced and its 

location moved forward. The extent and shape of the nonuniformity 

region appeared to have little effect on pressure distribution. 

Increase in nonuniformity magnitude would make C more negative and 

the shock location more rearward. 
P 

The CONMIN optimizer was coupled with the present analysis code 

to design axisymmetric bodies in uniform and nonuniform flow. For 

an ellipsoid, the trend indicated that by thinning the front portion 

and flattening the rear of a body, the pressure drag could be re- 

duced at high transonic and low supersonic speeds. The drag reduc- 

tion in a uniform flow of M = 1.1 and 0.995 was 14 percent and 5 

percent, respectively. In a nonuniform flow of M = 0.995 to 1.1, 

the pressure drag reduction achieved was 13 percent. For a body 

with a rounded leading edge and nonblunt trailing edge, the nose 

radius should be reduced and the thickness in the aft portion 

slightly increased to decrease the pressure drag. Using the NACA 

0012 contour as the initial shape, it was shown that a drag reduc- 

tion of 46 percent and 29 percent was achieved, respectively, in a 

uniform flow of M = 0.98 and a nonuniform flow of M = 0.98 to 0.995. 
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Figure 1. Axisymmetric Body Normal Coordinate 

Figure 2a. Ordinary Dummy Point 
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Figure 18. Effect of Supersonic Nonuniform Free~treams 

on Prexwre Distribution of an Ellipsoid/Sting 
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Figure 19. Effect of Tran8onic Nonuniform Free8treomrr 

on Pressure Oiatrlbution of on Ellipsoid 
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Figure 20. Effect of Transonic Nonuniform Freestream on 

Pressure Distribution of on Ellipsoid/Sting 
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Figure 22. Effect of Nonuniformity Magnitude on Drag 

Represent the Condition of Uniform flow. 
Symbols at Higher Moch Numbem Represent 

Nonuniform flow With Maximum Mach Numbem at 
the Indicated Values. 

Coefficient. Symbols at Higher Mach Numben 
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Figure 23. Cornpariaon of Original and Design Shapes and 

Pressure Distributions in Uniform Flow of Mm1.1 
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Figure 27. Comparison of Original and Design Shapes and Pressure 

Distributions in a Transonic Nonuniform Freastreom 
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figure 29. Comparfson of Original and Design Shapes and 

Pmsum Diddbutlons in Uniform flow of Ms0.98 
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Figure 31. Cornpodson of Original and Design Shapes and Pmsaure 
Distributions in a Tronsonic Nonuniform Freestream 
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